Analisis Perbandingan Algoritma Klasifikasi Decision Tree, K-Nearest Neighbors, Naive Bayes, dan Random Forest pada Data Pemilihan Legislatif KPU Menggunakan Kurva ROC

Authors

  • Naura Fayza I Institut Informatika dan Bisnis Darmajaya
  • Nicholas Svensons Institut Informatika dan Bisnis Darmajaya
  • Sri Asni Fatmawati Institut Informatika dan Bisnis Darmajaya
  • Pricillia Rotua S Institut Informatika dan Bisnis Darmajaya
  • Khanaya Erviona Institut Informatika dan Bisnis Darmajaya

Keywords:

Data analysis, Algorithms, Random Forest, Receiver Operating Characteristics

Abstract

In the context of the digital information era, analysis of general election data is crucial for understanding political dynamics. Legislative election data from the Indonesian General Election Commission (KPU) provides insight into voter behavior and election results. Selection of an appropriate classification algorithm is the main challenge in producing accurate predictions. This study compares four classification algorithms: Decision Tree, K-Nearest Neighbors (KNN), Naive Bayes, and Random Forest, using Receiver Operating Characteristic (ROC) curves as the main evaluation. The results show Random Forest performs best in handling legislative election data, providing important insights for future policy and research.

Downloads

Published

2025-04-23

How to Cite

Naura Fayza I, Nicholas Svensons, Sri Asni Fatmawati, Pricillia Rotua S, & Khanaya Erviona. (2025). Analisis Perbandingan Algoritma Klasifikasi Decision Tree, K-Nearest Neighbors, Naive Bayes, dan Random Forest pada Data Pemilihan Legislatif KPU Menggunakan Kurva ROC. JoDMApps (Journal of Data Science Methods and Applications), 1(1), 7–17. Retrieved from https://journal.darmajaya.ac.id/index.php/JoDMApps/article/view/911

Issue

Section

Articles