Klasterisasi Data Penjualan Menggunakan Algoritma K-Mean Dengan RapidMiner

Authors

  • Tiodora Priska Panjaitan Institut Informatika dan Bisnis Darmajaya
  • Asmaul Dwi Akbar Institut Informatika dan Bisnis Darmajaya
  • Sabrina Nur Rahmah Institut Informatika dan Bisnis Darmajaya
  • Stefani Cinthia Ernadi Institut Informatika dan Bisnis Darmajaya
  • Mochammad Akmal Fatoni Institut Informatika dan Bisnis Darmajaya
  • Fatkhul Inayah Institut Informatika dan Bisnis Darmajaya
  • Uli Vicilia Sitorus Institut Informatika dan Bisnis Darmajaya

Keywords:

Clustering, K-Means, Elbow Method, RapidMiner, Data Mining

Abstract

ABSTRACT
This research aims to identify the optimal number of clusters in the dataset using the K-Means algorithm and the Elbow method in Rapidminer software. The method used is K-Means to cluster data and the Elbow method to determine the optimal number of clusters. The results of research using the K-Means algorithm have obtained the optimal number of clusters. From the results of processing test data with the number of clusters (k= 2 – 5), it was found that cluster 2 had the highest number of domestic chicken egg sales compared to cluster 1, namely 41 purchases.

Downloads

Published

2025-04-26

How to Cite

Panjaitan, T. P., Asmaul Dwi Akbar, Sabrina Nur Rahmah, Stefani Cinthia Ernadi, Mochammad Akmal Fatoni, Fatkhul Inayah, & Uli Vicilia Sitorus. (2025). Klasterisasi Data Penjualan Menggunakan Algoritma K-Mean Dengan RapidMiner. JoDMApps (Journal of Data Science Methods and Applications), 1(1), 25–32. Retrieved from https://journal.darmajaya.ac.id/index.php/JoDMApps/article/view/889

Issue

Section

Articles